Oscillations of half-linear second order differential equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the stability of linear differential equations of second order

The aim of this paper is to investigate the Hyers-Ulam stability of the  linear differential equation$$y''(x)+alpha y'(x)+beta y(x)=f(x)$$in general case, where $yin C^2[a,b],$  $fin C[a,b]$ and $-infty

متن کامل

Oscillation of Second Order Half-linear Differential Equations with Damping

This paper is concerned with a class of second order half-linear damped differential equations. Using the generalized Riccati transformation and the averaging technique, new oscillation criteria are obtained which are either extensions of or complementary to a number of the existing results. 2000 Mathematics Subject Classification: 34A30, 34C10.

متن کامل

Qualitative Theory of Half-linear Second Order Differential Equations

Some recent results concerning properties of solutions of the half-linear second order differential equation (∗) (r(t)Φ(x′))′ + c(t)Φ(x) = 0, Φ(x) := |x|p−2x, p > 1, are presented. A particular attention is paid to the oscillation theory of (∗). Related problems are also discussed.

متن کامل

Two–point Oscillations in Second–order Linear Differential Equations

A second-order linear differential equation (P) : y′′ + f (x)y = 0 , x ∈ I , where I = (0,1) and f ∈ C(I) , is said to be two-point oscillatory on I , if all its nontrivial solutions y ∈ C( I )∩C2(I) , oscillate both at x = 0 and x = 1 , i.e. having sequences of infinite zeros converging to x = 0 and x = 1 . It necessarily implies that all solutions y(x) of (P) must satisfy the Dirichlet bounda...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Hiroshima Mathematical Journal

سال: 1995

ISSN: 0018-2079

DOI: 10.32917/hmj/1206127634